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SUMMARY 
In  most work on the theory of stability of laminar flow, 

infinitesimal disturbances only have been considered, so that 
,only the initial growth of the disturbance has been determined. 
I t  is the object of the present paper to  extend the theory to larger 
amplitudes and to study the mechanics of disturbance growth with 
the inherent non-linearity of the hydrodynamical system taken 
into account. 

The Reynolds stress (where averages are taken with respect 
t o  some suitable space coordinate) is the fundamental consequence 
of the non-linearity, and its effects can be anticipated as follows. 
Initially a disturbance grows exponentially with time according 
to the linear theory, but eventually it reaches such a size that the 
transport of momentum by the finite fluctuations is appreciable 
and the associated mean stress (the Reynolds stress) then has an 
appreciable effect on the mean flow. This distortion of the mean 
flow modifies the rate of transfer of energy from the mean flow 
to the disturbance and, since this energy transfer is the cause of 
the growth of the disturbance, there is a modification of the rate 
of growth of the latter. 

I t  is suggested that, in many cases, an equilibrium state may 
be possible in which the rate of transfer of energy from the 
(distorted) mean flow to the disturbance balances precisely the 
rate of viscous dissipation of the energy of disturbance. A theory 
based on certain assumptions about the energy flow is given to 
describe both the growth of the disturbance and the final 
equilibrium state, and application is made to the cases of 
Poiseuille flow between parallel planes and flow between rotating 
cylinders. The distorted mean flow in the equilibrium state can 
be calculated and from this, in the latter case, the torque required 
to  maintain the cylinders in motion. Good agreement is obtained 
with G. I. Taylor’s measurements of the torque for the case when 
the inner cylinder rotates and the outer cylinder is at rest. 

1. INTRODUCTION 
The immediate objective of the theory of hydrodynamic stability is to 

understand the mechanism of instability in laminar flow and to obtain a 
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criterion for its occurrence. A more fundamental objective is to understand 
how, and under what circumstances, turbulence may arise from laminar 
instability. The connection between laminar instability and turbulence 
may not be a direct one, but under certain circumstances instability 
of laminar flow will be a necessary prelude to transition to turbulence. 
It is clear that the stability problem in its general form must be 
considered to be non-linear, because the equations of motion are non- 
linear. 

The mathematical problem of hydrodynamic stability can be formulated 
by taking the given steady-state solution of the equations of motion and 
superimposing a disturbance of a suitable kind; this results in a set of 
(non-linear) ' disturbance ' equations, which govern the behaviour of the 
disturbance. If the solution of the equations shows that any disturbance 
ultimately decays to  zero, the flow is said to be stable; whereas if the 
disturbance can be permanently different from zero, the flow is unstable. 
It does not always happen that instability leads to turbulent motion, because 
another (possibly more complex) form of laminar motion may be the result. 
Indeed, it will be shown that this is often the case. 

Naturally, the solution of the disturbance differential equations is 
simplified considerably by linearization for small disturbances, and for 
a description of theories based on this assumption the reader is referred 
to the book by Lin (1955). On the basis of linear theory it is possible to 
consider disturbances which contain an exponential time factor of the form 
exp(kt), t being the time. The boundary conditions on the disturbance 
equations require the vanishing at the boundaries of quantities like the 
disturbance velocity components. Consequently, the boundary conditions 
are homogeneous, and there is an eigenvalue problem for the determination 
of the quantity k. In  this (linear) case, stability or instability is defined 
as follows: if it is possible for k to have a positive real part, the flow is 
unstable ; otherwise the flow is stable. 

The prediction by linear theory of a disturbance which increases 
exponentially with time is a feature which has occasionally given rise to 
the suggestion that turbulence would necessarily ensue from the growth 
of the disturbance to large amplitudes ; however, examples are known 
in which this is not the case. On the other hand, it has been argued that 
the non-linear terms will stabilize completely a flow which is unstable 
according to linear theory, but such arguments can generally be refuted 
(Stuart 1956a). I n  this paper, certain features of the role played by the 
non-linear terms of the equations of motion are discussed, and this leads 
to a clarification of the connection between linear and non-linear instability 
theories. Attention is restricted to  flows which have constant local 
Reynolds number. 

In  cases of instability of fluid flow, the disturbance is usually periodic 
in at least one direction of space. Thus it is convenient to take averages 
with respect to one of the spatial dimensions, and to separate the flow into. 
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a mean part and a disturbance part, where the latter has zero mean*. It is 
clear that the two parts of the flow are interdependent through the action 
of the Reynolds stress (arising from the disturbance) on the mean flow. 
(For a discussion of Reynolds stresses, the reader is referred to the books 
by Goldstein (1938) and Townsend (1956).) On the basis of linear theory, 
the disturbance is assumed to be so small that the effect of the Reynolds 
stress on the mean motion can be neglected, in which case the mean flow 
is the original laminar flow. However, in a non-linear theory the inter- 
dependence of the mean and disturbance parts of the flow must be taken 
into account. Let us now consider a flow whose local Reynolds number 
does not vary, as in the case of flow between parallel planes or concentric 
cylinders, and let the flow be perturbed by a small disturbance. Initially 
the disturbance amplifies exponentially with time according to linear theory, 
but eventually it reaches such a size that the mean transport of momentum 
by the finite fluctuations is appreciable, and then the associated mean stress 
(the Reynolds stress) has an appreciable effect on the mean flow. This 
distortion of the mean flow clearly modifies the rate of transfer of energy 
from the mean flow to the disturbance and, since this energy transfer is 
the cause of the growth of the disturbance, there is a modification of the 
rate of growth of the latter. These processes, in which the disturbance 
distorts the mean flow and the distortion of the mean flow modifies the rate 
of growth of the disturbance, occur simultaneously. 

I t  is natural to  enquire if an equilibrium state is possible, in which the 
rate of transfer of energy from the mean flow to the disturbance balances 
precisely the rate of viscous dissipation of energy of the disturbance. I n  
such an equilibrium state, the disturbance will have a definite finite amplitude 
and the mean flow will be distorted from its original laminar form. 
Experimental evidence of an equilibrium state of this kind is afforded by 
G. I. Taylor's observations on the instability of flow between rotating 
cylinders, where the instability takes the form of cellular, toroidal vortices 
spaced regularly along the axes of the cylinders. Taylor (1923, p. 342) 
observed that " A moderate increase in the speed of the apparatus merely 
increased the vigour of the circulation in the vortices without altering 
appreciably their spacing or position ", and suggested that " The experiments 
... indicate that the effect of the second-order [non-linear] terms is to prevent 

* It should be mentioned that, an another formulation of the problem, the ' dis- 
turbance ' is defined to be the whole of the deviation from the original laminar flow. 
However, with this definition the ' disturbance ' must contain a ' mean ' part, a fact 
which was overlooked by several authors in their studies of non-linear instability 
theory (Stuart 1956 a). In the opinion of the writer, this approach does not yield 
such a clear understanding of the physical processes involved in instability as does the 
approach based on the concept of a mean flow and a disturbance flow (with zero mean) 
interacting through the action of a Reynolds stress. Consequently, in this paper the 
flow will always be separated into a mean part and a disturbance part (with zero mean). 
The term ' disturbance ' will not be used to denote the deviation from the original 
laminar flow. 
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the vortices from increasing indefinitely in activity ”. The combination of 
the mean flow with a disturbance of definite amplitude may be referred to 
as an equilibrium flow. Examples relating to Poiseuille flow between parallel 
planes and to flow between rotating cylinders are described in $ 2  and $ 3 ,  
and for the case of flow between cylinders good agreement with experiment 
is obtained. For the case of Poiseuille flow, however, there is no experimental 
evidence that an equilibrium flow of the kind described above does occur. 
There is the possibility in this case, as in other cases, that a flow of this kind 
does not occur, but rather that there is a continual generation of harmonics 
of the basic disturbance and of other disturbances. 

In the discussion above, attention has been paid to equilibrium flows 
which may develop when the original laminar flow is unstable according to 
linear theory. Some flows, however, such as Couette flow between parallel 
planes and Poiseuille flow in a circular pipe, are completely stable against 
infinitesimal disturbances. Even so, turbulence can occur at sufficiently 
high Reynolds numbers. Furthermore, turbulence occurs in some flows 
(for example, in Poiseuille flow between parallel planes) at a lower Reynolds 
number than the critical according to linear theory, that is, it occurs when the 
laminar flow is stable with respect to infinitesimal disturbances. A suggestion 
which may lead to an explanation of such phenomena is that the appropriate 
laminar flow may be unstable with respect to finite disturbances. When a 
disturbance of suitable magnitude is present, the mean flow may be 
distorted to such a form that the rate of transfer of energy to the disturbance 
can balance exactly its rate of dissipation by viscosity. On the other hand, 
a finite disturbance which is small enough will presumably decay to zero 
amplitude, either because the rate of energy transfer to the disturbance is 
insufficient to balance the rate of viscous dissipation of kinetic energy, or 
because the energy transfer is actually from the disturbance to  the mean 
flow. As an example of instability for finite disturbances, Meksyn & Stuart 
(1951) considered the case of Poiseuille flow between parallel planes and 
showed that the critical Reynolds number drops as the amplitude of the 
disturbance rises. The reader is referred also to  Lin (1955) and Stuart 
(1956 b) for a discussion of these ideas. A discussion of the formulation of 
the instability problem for plane Couette flow with finite disturbances was 
given by Noether (1921). 

It will be convenient to refer to non-linear disturbances as existing under 
supercritical conditions if the Reynolds number is above the value which is 
critical for linearized instability, and as existing under subcritical conditions 
if the Reynolds number is such that the flow is stable with respect to 
infinitesimal disturbances. A non-linear disturbance may clearly arise 
spontaneously under supercritical conditions as a result of continued 
amplification of a secondary disturbance ; the sequence of events which 
would lead to a non-linear disturbance under subcritical conditions is less 
evident and will not be discussed here. 

If equilibrium flow is established consisting of a mean flow with a 
.steady-amplitude finite disturbance, it does not follow that it is a stable flow 
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at all Reynolds numbers above the critical value for which it first occurs. 
It is likely, however, to be stable for a certain range of Reynolds number 
above the critical. Moreover, it is clear that it must become unstable at 
some Reynolds number if turbulence is to occur at higher Reynolds numbers. 
For example, in the case of flow between rotating cylinders mentioned 
above, Taylor observed that “ a  large increase [in the angular speed] 
caused the symmetrical motion [of the cellular vortices] to  break down 
into some kind of turbulent motion, which it was impossible to follow by 
eye ”. Another interesting case is that of Poiseuille flow between parallel 
planes, where the critical Reynolds iiumber according to linear theory is 
a Reynolds number for which the flow is normally turbulent. Consequently, 
equilibrium flows under supercritical conditions are, in this case, almost 
certainly unstable. Similar considerations apply to equilibrium flows under 
subcritical conditions, at least for the higher Reynolds numbers for which 
they are valid. 

The  development of a non-linear instability theory for boundary-layer 
flows, where the flow and local Reynolds number change in the stream 
direction, presents additional difficulties. Whereas in the linear instability 
theory it is permissible to regard a boundary-layer flow as nearly parallel 
and to neglect boundary-layer growth, it does not seem obvious that such 
an approximation is permissible in a non-linear theory. Because the local 
Reynolds number increases in the downstream direction, any disturbance 
is convected into regions of higher Reynolds number and the effect of this 
continuous change of Reynolds number would have to be taken into account. 
Consequently, the non-linear theory which will be described in this paper 
for flows with constant local Reynolds number does not necessarily apply 
quantitatively to  the case of the boundary layer. T h e  main features of the 
theory are of wide applicability, but there may be additional factors 
influencing them because of the growth of the thickness of the boundary 
layer. 

An interesting suggestion concerning the development of turbulence 
from the growth of small disturbances has been made by Landau (1944)- 
As noticed above, the occurrence of instability in a flow may lead to the 
replacement of the original laminar flow by a new laminar flow, which consists 
of a mean flow with a superimposed finite disturbance. This flow may 
be expected to persist for a certain range of Reynolds number above the 
critical value and then to become unstable at some Reynolds number against 
a new (second) type of disturbance. A new equilibrium flow, consisting 
of a mean flow with two superimposed modes of disturbance, is then 
conceivable for a range of Reynolds number above the second critical value. 
As the Reynolds number is raised still further, additional modes of 
disturbance may appear successively until, at sufficiently large Reynolds 
number, the flow is so highly disturbed as to be considered turbulent. In 
the case of flow between rotating cylinders, experiments show that the 
development of turbulence takes place fairly slowly as the Reynolds number 
is raised ; this would correspond to the first two at least of the successive 
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critical Reynolds numbers of Landau’s theory being fairly widely spaced. 
O n  the other hand, there are cases of flow in which turbulence develops 
rather suddenly as the Reynolds number is raised, and in these cases one 
might infer that the critical Reynolds numbers are close together. 

I n  the discussion given above, attention has been entirely directed to  
instability in fluids which are in motion. There is, however, another 
important type of instability, namely that which occurs when a horizontal 
layer of fluid is heated from below, causing an unstable density gradient 
in the fluid. Instability takes the form of convection in cells of polygonal 
planform, and occurs when a certain parameter (the Rayleigh number) 
is above a critical value. T h e  linear theory of instability is well understood 
(see, for example, Pellew & Southwell 1940) and is known to be analogous, 
under certain conditions, to the theory of instability of flow between 
rotating cylinders. T h e  fundamental physical process in the instability 
is the conversion of potential energy associated with the gravitational field 
into kinetic energy of the convective disturbance motion. When the 
disturbance has a finite amplitude, the mean heat transport by the 
convective motion causes a modification of the mean temperature distribu- 
tion, where averages are taken over horizontal planes ; therefore, because 
of the corresponding modification of the mean density distribution, the rate 
of transfer of energy from the gravitational field to the disturbance is 
modified. It appears that a steady (equilibrium) state is possible, in which 
the rate of transfer of energy into the disturbance balances precisely the rate 
a t  which energy is dissipated and diffused. The  non-linear theory of thermal 
convection has been studied by Sorokin (1954) and by Malkus & Veronis 
(1958), both by methods related to  those of the present paper and by 
perturbation series expansions. 

Some of the results obtained in this paper are similar to results obtained 
from the turbulence models due to Burgers (1948) and Hopf (1956). For 
a discussion of non-linear instability effects in the Burgers model, the reader 
is referred to a paper by Stuart (1956 b). 

2. DISTURBANCES UNDER SUPERCRITICAL CONDITIONS IN POISEUILLE FLOW 

In this section a simple treatment of the non-linear problem for 
disturbances under supercritical conditions is described, and it is applied 
in this section and in $ 3  to the cases of Poiseuille flow between parallel 
planes and of flow between rotating cylinders. The  method is based 
essentially on a balance of energy, taking into account the mean-flow 
distortion due to the Reynolds stress, and it is the ‘ integral ’ properties 
of the flow which are treated rather than the spatial details. Consequently, 
it is clear that the method has an obvious application to cases of instability, 
such as that of flow between rotating cylinders, where it is the overall 
properties of the flow (as opposed to  the details) which are important. 
O n  the other hand, in cases of instability which are governed by the 
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Orr-Sommerfeld equation (for example, the case of plane Poiseuille flow), 
the instability depends very much upon precise details of the mean flow, 
especially in the vicinity of the critical layer. Consequently, the method 
is less valid for such cases, and the application to plane Poiseuille flow has 
less validitythan the case of flow between rotating cylinders. Moreover, there 
is less experimental evidence of quantitative value in the former case than 
in the latter. In spite of these facts, the application to plane Poiseuille flow 
is of considerable illustrative value, and is therefore presented in this section 
before a treatment in § 3 of the case of flow between rotating cylinders, for 
which a comparison with experiment will be made. 

Consider a two-dimensional flow between parallel planes, and let x1 
denote the coordinate parallel to  the planes and x2 the coordinate normal 
t o  them, with ul, u2 denoting the corresponding components of velocity, 
Let P denote pressure, p density, v kinematic viscosity and t the time. 
Now let us introduce a reference length L, equal to half the distance between 
the planes, and a reference speed Uo, the maximum speed in laminar flow. 
'Thus we define 

. X I  = Lx ,  x2 = Lx, u1 = uou, u2 = uow, P =ppu; ,  t = Lt/Uo. (2.1) 

'Then the Navier-Stokes equations and equation of continuity are 

1 au au au ap 1 
- +u- +w- = - - + - V Z U ,  
at ax ax ax R 

aw aw aw 
at ax ax 

au aw - + - = o ,  
a x  ax J 

- +u- +w- = - 

where V2 = a2/ax2 + a2/ax2, and R = U,, L / v  denotes the Reynolds number 
for the problem. 

The solution for undisturbed laminar Poiseuille motion is 

z i  = 1 -x2 ,  W = 0,  = - 2x/R fconst., (2.3) 

where a bar above a quantity denotes a mean value with respect to the 
distance x. This is the basic laminar motion whose non-linear instability 
characteristics we wish to examine. 

Now let 

u=G(x,t)+u'(x,x, t) ,  w = W'(X,X,t), (2.4) 

where u' and w' denote components of a finite disturbance (with zero mean). 
Since the disturbance is finite, G is no longer given by (2.3) but is distorted 
by the Reynolds stress. Furthermore, if the disturbance is growing or 
decaying in amplitude, C depends on time. We suppose that u' and w' 
.are harmonic in x with wavelength 2n/x and are given by Fourier series. 
I f  we substitute (2.4) into (2.2)) separate out the mean and disturbance 
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parts of the motion and then integrate the resulting disturbance equations 
to obtain the energy balance relation, we have (without approximation) 

= I l  - ISIR, (2.5) 
where the integrands are evaluated over a volume bounded by the planes 
and by one wavelength. The mean velocity ii occurring in (2.5) is given 

ap 1 a 2 i i  + - -9 (2.6) 
aii au'w' 
aT ax ax R a x - *  -+ -=  - -  

by 

For a discussion of the derivation of the above equations, and for the 
non-linear disturbance differential equations for u' and w', the reader is 
referred to Stuart (1956a, b). Equations (2.5) and (2.6) will be used 
here as an approximate basis for the solution of the non-linear problem 
of the growth of the disturbance (u', w') .  

We note that in equation (2.5) the term on the left-hand side gives the 
rate of growth of the disturbance energy within the volume considered. 
On the right-hand side, the term Il is the integral of the product of the 
Reynolds stress and the mean velocity gradient, and represents the rate 
of energy transfer from the mean flow to the disturbance ; the term 12/R 
is always positive and represents the rate of viscous dissipation of energy 
of the disturbance. If Il is positive and greater than 12/R, the disturbance 
energy is growing and the disturbance is increasing in amplitude. 
Equation (2.6) shows how the distribution of mean motion is affected by 
the viscous stress, pressure gradient, and Reynolds stress due to the 
disturbance. An equilibrium flow is possible if ii can be so distorted by 
the Reynolds stress that Il = I J R  for a given Reynolds number. 

It is worth considering at this point the boundary conditions on the 
mean motion. For the velocity they are ii = 0 at z = +. 1. We shall also 
adopt the condition that the mean pressure gradient shall remain unchanged ; 
this is clearly physically realistic, since the pressure gradient is externally 
applied*. As a consequence, the mean skin friction on the walls will be 
the same in the equilibrium flow as in the laminar flow. However, the mean 
velocity near the channel centre must drop when a disturbance is present, 
because energy is required to maintain the disturbance. The unchanged 
pressure gradient is given by equation (2.3) and the mean motion equation 
thus takes the form 

aa a - 2 1 a 2 i i  
- + - (u'w') = - + - - 
at ax R R a x 2 '  

In  a state of equilibrium, ii is independent of time and equation (2.7) is 
easily integrated to yield 

ii(z)= 1 - x 2 + R  1: dz. 

* Other boundary conditions, such as that of constancy of mass flux, yield qualita- 
tively similar results for the amplitude of oscillation. 
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Since ufwf is an odd function of z, C = 0 at x = 1. Moreover, since 
Il is positive, u'w' must be of opposite sign to  aiildx in at least a dominant 
range of z ;  therefore, it must be dominantly positive when x is positive. 
Thus 6 is less than unity at x = 0 and, in general, 6(x) is everywhere less 
than its value for laminar flow. A corollary of the condition on the mean 
pressure gradient is that the Reynolds number is based on a velocity U, 
which is the maximum for laminar flow with the same mean pressure gradient. 

Suppose we now define a stream function for the disturbed flow in the 
form 

- 
- 

+ = +o(z, t )  + + l ( x , T ) e z a ( ~ - c r  ') + J1(z ,T)e - za ( s -c r7 )  + +z(x, T)e2ia("-cr 7 )  + 
N 

+&(z, ~ ) e - ~ l ~ ( ~ - ~ r ~ ) +  ..., (2.9) 
where the symbol - represents a complex conjugate. + represents a 
mean flow together with a periodic disturbance consisting of the first 
harmonic with wavelength 2n/a, and higher harmonic components having 
wave-numbers na ( n  integral) but the same (real) wave velocity c,, which 
is assumed to be independent of time. The  amplification or damping of 
the disturbance, and the consequent changes in the mean velocity (given by 
21 = a#,/az), are accounted for by the dependence of all the +functions on 7. 

If we substitute (2.9) into (2.2), utilize 
= a+jax, = - a+lax, (2.10) 

eliminate the pressure and separate out the Fourier components of the 
disturbance, we obtain a set of equations for the functions ii, +1, &, and 
so on. The  equations are similar to (3.2), (3.3)  and (3.4) of the paper by 
Stuart (1956 b), except that allowance must be made for the dependence 
of the functions on 7. Because of the non-linearity of the system, all of 
the functions are mutually dependent and an infinite set of equations has 
to be solved to  obtain an exact solution. I n  particular, the mean-motion 
equation is (2.6) with 

where primes denote differentials with respect to z .  
In the linear theory of instability, the Reynolds stress is neglected, 

so that the mean velocity is the laminar Poiseuille flow. Furthermore, 
the stream function (2.9) contains only the functions 4, and q$, the real 
part of which determines the actual stream function. The  problem then 
is the solution of the Orr-Sommerfeld equation (see Lin 1955), namely 

( i i - c r - i c2 ) (+ ;  - ~ 2 + ~ ) -  = - (i/aR)(~~-2aZ+;+a4~,), (2.12) 

where ii = 1 -z2 and the function +1 is proportional to exp(acj T ) .  The  
non-linear problem posed here is to follow the growth of a disturbance 
at a given Reynolds number and, in particular, to find out if an 
equilibrium flow is possible at that Reynolds number. T o  this end, 
the stream function (2.9) has been chosen to allow for changes in the basic 
disturbance, partly through the generation of harmonics, due to the 
non-linearity . 

z-7 = ia{f&& - + 2(& J2 - C2) + ...I, (2.1 1)' 
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A simple approximate method of solution 
The non-linear effects of a disturbance of finite amplitude appear to  

be of two kinds. On the one hand there is, through the Reynolds stress, 
a modification of the energy transfer between the mean flow and the first 
harmonic component, +1, of the disturbance. On  the other hand, higher 
harmonics etc.) of the disturbance are generated and there is an 
interchange of energy between them and both the mean flow and the first 
harmonic component. The  assumption which will be made here is that the 
dominent non-linear interaction is that between the mean flow and the first 
harmonic component of the disturbance. To put it in another way, the 
effect of the Reynolds stress on the mean flow is taken into account, thus 
causing modifications of the energy transfer between the mean flow and the 
first-harmonic disturbance, but the generation of higher harmonics is 
ignored. A similar assumption was made by Meksyn & Stuart (1951) 
for disturbances under subcritical conditions. I n  a formulation of this 
kind there are two differential equations to determine C and +1, namely, (2.7) 
and (2.12) with ci replaced by a - l a / a~  ; in equation (Z.ll), +2 = +3 = ... = 0. 

I n  the present case of disturbances under supercritical conditions, we 
shall make the additional assumption that the disturbance (u’, w’) is 
similar in shape to  a solution given by linear theory, but that the solution 
is multiplied by an amplitude factor, a(T),  which is a function of time. 
Then the approximate problem is to satisfy the disturbance energy-balance 
equation (2.5) and the equation of mean motion (2.7), in which case the 
amplitude is determined. If the amplitude of the disturbance in an 
equilibrium flow is required, E is given in terms ofu’w’ by (2.8) and can 
be substituted into (2.5). With the ‘ shape ’ assumption, (2.5) then gives 
a relation between a2 and a4, so that a2 is determined in terms of integrals 
involving functions given by linear theory. This is the most important result. 

An equation illustrating the growth of the disturbance may be obtained 
by noting that the term a t s / a ~  in (2.7) is negligible at small times on the 
basis of linear theory, and also at large times because it is to be expected 
that a steady mean flow will be approached. If, on this basis, the term 
a C / a ~  is ignored at all times, (2.5) and (2.8) yield the equation 

(2.13) aa2 Y4 a2 yl- = y2aa2-y3a2Ra4- -, aT R 
where a is the amplitude of the disturbance and 

1 1 

0 0 

1 1 

0 0 

71 = j {Id‘12++21+121& 7 2  = 4 j 4 + i + ; - + ? . + w ,  

y3 = 4 j (+i+j-+T+;)2dx, y4 = 2 j  ( 1 + ” 1 2 + 2 ~ 2 1 + ’ 1 2 + ~ 4 1 + 1 2 } ~ ~ ,  

(2.14) 1 
the suffixes r and i denoting real and imaginary parts. The function $(z)  
is the amplitude distribution of a disturbance stream function according 

-to linear theory. Equation (2.13) is of the form 

dY 
= PlY - P2Y-P3Y27 (2.15) 
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where y is the square of the amplitude of the disturbance. Equation (2.15) 
was given earlier by Landau (1944), although he does not state how, and 
under what assumptions, it was derived. 

The terms in (2.15) and the corresponding ones of (2.13) have the 
following physical meanings. The term dy/d-r represents the rate of change 
of the kinetic energy of the disturbance, the term ply  the rate of energy 
transfer from the mean flow to the disturbance, the term P2y the rate of 
viscous dissipation of the disturbance, and the non-linear term P3y2 the 
restriction of the rate of energy transfer to the disturbance by the 
Reynolds-stress distortion of the mean flow. For very small disturbances, 
the non-linear term is negligible, and if P1 > P2, the disturbance amplifies 
like C exp[(pl - P2)7] ,  where C is a constant. This solution corresponds 
to linear stability. On the other hand, if the Reynolds stress is included 
the general solution of equation (2.15) is 

Ceii31-Psh 
= 1 +(&)Ce".-@h ' (2.16) 

When T +  - co, y + C e ~ p [ ( ~ , - / 3 ~ ) ~ ] ,  which is the linearized solution 
given above. Furthermore, when T+ + co, y e  (P1-P2)/up3, whatever 
the value of C. This solution suggests that, whatever the initial size of 
the disturbance, it always builds up to the same limiting amplitude. This 
conclusion is physically reasonable, although it should be remembered 
that the exact form of (2.16) is based on the assumption that an/& may 
be neglected at all times. 

Reverting now to (2.13), we note that the critical Reynolds number is 

P1- P 2  

R, = Y 4 b Y 2 ,  

the amplification factor of r,b2 on linear theory is 

and the square of the equilibrium amplitude is 

Thus a, is proportional to the square root of the difference between the 
actual Reynolds number and the critical Reynolds number. In order to 
calculate specific values of the amplitude at a given Reynolds number, it is 
necessary to  approximate to the function 4. A fairly obvious choice would 
be the function appropriate to the minimum critical Reynolds number. No 
calculation of this function has been made, although Thomas (1953) has 
calculated and tabulated 4 for tc = 1, R = lo4, c = c, + ici = 0.2375 + 0.0037i. 
The function is illustrated in figure 1, 9? denoting the real part and 9 the 
imaginary part. Numerical integration of (2.14) then gave 

y1 = 2.05146, ye = 0.040192, y 3  = 0.002308, y4 = 247.62. (2.17) 
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Using these values, we find that uR, = 6150, which is in reasonable agreement 
with Thomas’s critical value, namely, R, = 5780 at M = 1.02. Thus, even 
though the function is not the correct stream function at the critical 
Reynolds number, the energy-balance relation yields a fairly good approxi- 
mation to the critical Reynolds number. It is suggested, therefore, that 
the numbers (2.17) may be applicable over a wide range of R, and possibly 
also for small variations of cc. Another characteristic of the linear instability 
theory which can be calculated from (2.17) is the amplification consiant ci 
at cc = 1, R = 104, and this is found to be ci = 0.00376. The closeness 
of this to  Thomas’s value, 0.0037, serves as a check on the accuracy of the 
numerical work. 

1 1 I .  I I I 
0.1 0’2 03 0 4  0.5 0.6 0.7 0.8 0’9 1.0 

2 Wall 
0 

Channel 
centre 

Figure 1. Function 4 for Poiseuille flow at R = lo4, 01 = 1, c = 0.2375+0.00373. 

For the non-linear properties, we consider a wave-number, cc = 1, 
since this is close to  the value at the critical Reynolds number. The 
equilibrium amplitude number, a,, rises from zero at the critical Reynolds 
number (6150) through 0.00256 at R = lo4 to a maximum value of 0-00266 
at R = 12300 (= 2R,). T o  obtain the actual (dimensionless) stream 
function at a given value of R, the curves in figure 1 should be multiplied 
by the appropriate value of a. The distribution of Reynolds stress is shown 
in figure 2 (obtained from Thomas’s calculations), from which the actual 
(dimensionless) Reynolds stress can be obtained by multiplying by 2. 

Using the calculations described above, the mean velocity profile of 
the equilibrium flow can be calculated from equation (2.8) ; for R = lo4, 
it has the form shown in figure 3. The distorted profile is everywhere less 
than the laminar profile because of the energy transfer to the disturbance, 
but has the same gradient at the wall. It can readily be shown that the work 
done by the pressure gradient to maintain the motion precisely balances the 
total viscous dissipation of energy in the equilibrium flow. The root-mean- 
squares of the disturbance velocity components, (>)I12 and (z2)1/2, are: 
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Figure 2. Reynolds stress function for Poiseuille flow at R = 

I 

104. 

0 0 2  0.4 0.6 0.8 1.0 
Channel Wall 
centre 

Figure 3. Comparison of laminar and distorted mean flows. 
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shown in figure 4 for a = 1, R = lo4. The magnitudes are similar to those 
applicable in turbulent motion at the same Reynolds number. A further 
point worthy of note is that, at a Reynolds number of lo4, the maximum 
value of the Reynolds stress is of the same order as the maximum value of 
the viscous stress. 

As mentioned in the Introduction, the equilibrium flow under super- 
critical conditions in Poiseuille flow between parallel planes is almost 
certainly unstable, because turbulence normally exists at those Reynolds 
numbers for which the supercritical flow exists. However, it is of interest 
that the magnitude (see figure 4) of disturbance which can be sustained 
is similar to the magnitude appropriate to turbulent flow at the same 
Reynolds number (Reichardt 1938; Laufer 1950). 

0.051 I I I I I I I I 1 

centre  

Figure 4. Root-mean-square velocity fluctuations at R = lo4. 

In connection with the establishment of the equilibrium flow, it has been 
suggested here that an infinitesimal disturbance at a given Reynolds number 
can amplify into an equilibrium flow. Experimentally, however, it is the 
equilibrium flow itself which is important, rather than the way in which 
it is attained. In  practice the equilibrium flow may arise as follows. Suppose 
the flow can be kept free of disturbances, so that disturbances and turbulence 
do not occur under subcritical conditions. Then, as the Reynolds number 
is raised, a weak disturbance will appear at the critical Reynolds number. 
The disturbance will have a small but finite amplitude. Then, as the 
Reynolds number is increased, the flow could (if it were not unstable) 
retain the same wavelength as the disturbance which first occurred, but 
with an amplitude a N R-l(R - Rc)1’2. This idea is discussed again in $ 3  
in connection with the flow between rotating cylinders. 
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3. DISTURBANCES UNDER SUPERCRITICAL CONDITIONS IN FLOW BETWEEN 

The second application of the theory will be to the flow between two 
concentric rotating cylinders, with Y ,  8, 2: as the cylindrical coordinates 
and u, v, w the corresponding velocity components. It is assumed that 
the flow has rotational symmetry and is therefore independent of 8. Then 
the Navier-Stokes and continuity equations are 

ROTATING CYLINDERS 

where 

av ue’ ( :> , 
av av 
at  ay az - +u- +w-  +-  = v vz-- ‘z, 

aw aw aw 1 aP + u -  +w- = - -  - +vvzw,  
a t  ay aZ P 22: 

I 
1 (3.1) 

- 

(3.2). 

I t  is known from the work of Taylor (1923) and others that, when the 
rotational speed of the inner cylinder (or, to be more specific, a parameter 
sometimes called the Taylor number) is above a critical value, the steady 
laminar flow is unstable. The  disturbance which appears takes the form 
of cellular, toroidal vortices spaced regularly along the axis of the cylinders. 
The linear instability theory for this flow is well known (Taylor 1923) 
and our purpose here is to study the non-linear theory, primarily in order 
to obtain the amplitude of the equilibrium flow. 

Since the flow which results from the instability is periodic with respect 
to z, it is convenient to take averages with respect to z. I n  order to allow 
for the distortion of the disturbance by the non-linearity, we write 

u = u’ = ul(r,  t)e”z+u,(r, t)e%iaZ+ ... +u”,(r, t)e-iaZ+UU2(Y, t)e-2”Z+ ... (3.3) 
together with exactly similar series for n’ = v - 6(r,  t )  and w’ = w, where 
the symbol N denotes a complex conjugate and a bar above a quantity 
denotes a mean value. If the above series are substituted into the equations 
of motion (3.1) and the Fourier components are separated, there results 
a set of equations for all the velocity functions involved in (3.3). 

For the mean motion, we find 

(3.4)’ 

(3.5). 

similar equations have been derived and discussed by Townsend (1956) 
in connection with turbulent flow. Equation (3.4) gives the radial pressure 
gradient required to balance the centrifugal force and Reynolds stress, 
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while (3.5) gives the mean rotational velocity 5 as a function of the Reynolds 
stress. The dependence of 5 on t is retained because, if the disturbance 
is growing or decaying, the mean motion undergoes distortion in order 
to  maintain the energy balance. A suitable boundary condition to apply 
to the mean flow is that just enough external power is supplied to maintain 
the angular velocities of the cylinders at constant values, even though the 
skin friction is changing. If rl and r2 are the radii of the inner and outer 
,cylinders and Ql and Qz their angular velocities, the boundary conditions 
are 

d = r1 Ql at r = yl; d = yZ Q2 at r = r2. (3.6) 

I n  a state of equilibrium, ad/& is zero and (3.5) can be integrated to give 

and m = sZ2/sZl. With zero Reynolds stress, these relations become those 
appropriate to laminar Couette flow between rotating cylinders. 

I n  addition to the mean motion equations, it is possible to write down 
an infinite set of differential equations for the harmonic components of 
the disturbance. These components are all mutually dependent because 
of the non-linearity of the system. These equations will not be derived 
or considered in detail here, because it is proposed to use an approximation 
similar to that used in $2. The assumption is that the dominant non-linear 
interaction is between the mean flow (a) and the first harmonic component 
of the disturbance ( U ~ , ~ ~ ~ , W ~ ) ,  where the latter is assumed to be similar 
in shape to  that given by linear theory but multiplied by an amplitude 
factor. The mean flow is distorted by the Reynolds stress of the disturbance 
and the consequent alteration of the energy transfer between mean flow and 
disturbance determines the amplitude. As in $2, the disturbance energy- 
balance relationship is required for this purpose. 

If the equations of the mean motion are subtracted from the equations 
(3.1), equations are obtained for the disturbance velocities u’, u’, w’ (as 
defined by (3.3)). From these it is possible to obtain the following 
disturbance energy equation, which is an exact consequence of the equations 
for an axisymmetric disturbance : 

- p  J J  ( ~ 2 + q ‘ 2 + ~ ’ 2 ) r d ~ d ~ ,  (3.10) 
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the vorticity components of the disturbance being given by 

The three integral terms of (3.10) can be interpreted in a similar way to those 
of (2.5). The net rate of increase of disturbance energy is equal to the 
difference between the integral of the product of the Reynolds stress and 
the flow shear (i35/ar - 5 / r ) ,  which represents the rate of transfer of kinetic 
energy from the mean flow to the disturbance, and the rate of viscous 
dissipation of kinetic energy. 

The approximate non-linear problem of stability is that of solving the 
equation of mean motion, (3.5), and the equation of energy balance for the 
disturbance, (3.10), where, in the latter, the disturbance is assumed to be 
specified in shape but not in amplitude. The pair of equations (3.5)and (3.10) 
can then be used to determine the amplitude, as in $2. If the amplitude 
of the disturbance in the equilibrium flow is required, G is given in terms 
of t l "  by (3.7); then (3.10) involves both second and fourth powers of the 
amplitude, and the latter can therefore be determined. Moreover, an 
assumption similar to that of 3 2 concerning the growth of the disturbance 
can be made. This assumption is that at7/at can be ignored at all times 
on the grounds that it is certainly negligible at both small and large times. 

By the procedure outlined above a differential equation of the form (2.15) 
is obtained, and it has the solution (2.16). I n  order to calculate the 
coefficients in the equation, it is necessary to specify the shape of the flow 
field so that several integrals can be evaluated. I n  the detailed calculations 
which follow, attention is restricted to the case Q2 = 0 so that comparison 
can be made with experiments of Taylor (1936). Secondly, only the very 
simplest case is considered, that in which the annular gap is small compared 
with the radii of the cylinders. The linear stability problem (Chandrasekhar 
1953) is then specified by 

( 0 2  - h2) ( 0 2  - A2 - cr)2~)l + X2 Tv, = 0,  ' (3.12) 
vl = D2vl = D(D2-X2--)vl  = 0 at = & i ,  J' 

where 
d = Y Z - r l ,  2 ~ 0  = r1+r2, Y = r0+<d, 1 
X =ud,  cr = kd2/v, D s  d/d<, (3.13) 

The  symbol T denotes the 

r 
T = Q?rld3/u2, R = Q2,rld/u. J 

The disturbance is proportional to exp(kt). 
Taylor number and R denotes the Reynolds number. 

To the same approximation ( d  < y o )  the mean flow is given by 

d = $ r l G l ( l  -25 ) - (az r~G2: :d2 /u2)~( t ; ) ,  (3.14) 

Q(5) = - 2 r  Z d 5 + 2 t ; r 2  Z d 5 +  J Z d t ,  (3.15) 
-112 

-112 -112 -112 

2 = - SP, P = (D2 - X2)S, u1 = - ar, Ql P, v1 = (ar: Q; d / u ) S ,  
(3.16) 

P.4.  B 
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u being the amplitude of the velocity uI .  
same approximation by 

'The flow shear is given to the 

a@ G rl Q1 2a2r;,"2' d ( j l l 2  2 di - -Z(( ) ) .  (3.17) 

It has been assumed that the Reynolds-stress term in (3.14) is much larger 
than the terms of order d/ro. 

If the approximation d < r o  is adopted and a few transformations are 
applied, the largest terms of (3.10) yield 

ar r d -1/2 

2 4 y4a2 
A2T ' = y 2 a 2 - y Y s R  a 

da2 
y1 d7 

where 
T = 2ut/d2, 

(3.18) 

(3.19) 

This equation is of the form (2.15) and has the property that the amplitude 
tends to a limiting value with the passage of time. If the Reynolds-stress 
term ( - y 3  R2u4) is neglected and the disturbance is neutral, equation (3.18) 
is simply Chandrasekhar's (1953) variational condition. The critical 
Taylor number is given by h2Tc = y4/yz and the equilibrium amplitude by 

(3.21) 

Thus a p  is proportional to the square-root of the difference between the 
actual Taylor number and the critical Taylor number. 

Equation (3.12) can be used to specify the function S( l )  and, since we 
are primarily concerned with the equilibrium flow, S(C) will be assumed 
to be the function appropriate to cr = 0, h = hc = T ,  T = T, = 1708. This 
is the case of a disturbance at the critical Taylor number, for which we 
have, from the variational condition given by Chandrasekhar (1953), 

1 1 C2 COST( A , y = - - + - + - + -  
8n2 7r4 2n2 477-3 

(3.22) 
cosh T C  
cosh +T 

x- 

to a good approximation, where A = -0.02686. Then for a range of 
Taylor numbers above the critical value, and for the particular wave-number 
X = T ,  the amplitude can be evaluated according to (3.20), (3.21) and (3.22). 
Thus 

(3.23) 

This relation, together with (3.16) and (3.22), then gives the velocity 
distribution of the disturbance. 
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Once the amplitude of the velocity distribution is known, the mean 
skin friction can be calculated from (3.17) and the mean torque on a cylinder 
of given length then follows. Taylor (1936) carried out experiments with 
cylinders 84.4 cm long, the outer cylinder having radius r2 = 4-05 cm 
while the radius of the inner cylinder varied from case to case. Here we 
shall compare the measured and calculated torque for the case rl = 3-94 cm. 
The number of vortices spaced along the axis is 700 approximately and, 
since alternate vortices rotate in opposite directions, the torque measured 
is the mean torque, where the term ' mean ' is defined in the sense of this 
paper. In  figure 5, G denotes the torque measured in units gmcm2sec-2 
and N the angular speed measured in units rev.sec-l. I t  can be seen 
that the agreement is good for Taylor numbers ( T  being proportional 

5.0 

0 - 

I I I I I I [ I I I I I 

- - 
X Experiment (G.  1 Taylor) - - 

- 
5 - X \  - 

- x'x 

- 
Theoretical 

- 
- Theoretical 

for  laminar f low 



20 J. T. Stuart 

will be valid for some range of Taylor iiumber above the critical value, 
and figure 5 shows that this is indeed the case. For a non-linear instability 
problem which has a certain similarity to the present one, that of thermal 
convection in a horizontal layer of fluid, Malkus & Veronis (1958) have 
devised a rigorous expansion procedure which gives the limiting steady 
amplitude of convection for a certain range of Rayleigh number above the 
critical value. Their method gives results very similar to those obtained 
by an integral procedure analogous to the present one. Presumably such 
an expansion would be valid for the cylinder problem also. 

I I I 

5 -0’4 -0.3 -0 2 -0-1 0 0 1  0.2 5 

Figure 6. Mean flow between rotating cylinders ; log,,(N/~) = 2 . 5 ,  T = 20 98‘7. 

With regard to the way in which an equilibrium state may be set up 
at a Taylor number above the critical value, it has been suggested here 
(though not proved rigorously) that an infinitesimal disturbance which 
increases exponentially with time will necessarily tend to an equilibrium 
state. On the other hand, the experiments generally require a different 
interpretation concerning growth. Taylor (1923, p. 331)  states that 
“ The speed of the motor [driving the cylinders] was ... gradually increased 
till instability occurred’’ and (p. 342) that “ A  moderate increase in the 
speed of the apparatus merely increased the vigour of the circulation in the 
vortices...”. It seems, therefore, that, as the Taylor number is raised, 
instability sets in at the critical Taylor number with a definite wavelength. 
Further increase of the Taylor number entails the flow retaining the same 
wavelength, but with the amplitude of the disturbance motion given by 
(3.23). Consequently, it seems that the non-linear stability problem of 
growth at a given Reynolds or Taylor number, as treated herein, does not 
correspond directly to the circumstances of Taylor’s experiments whereas 
the treatment of the equilibrium flow presumably does. 
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